Inference in Hybrid Systems with Applications in Neural Prosthetics
نویسندگان
چکیده
This thesis develops new hybrid system models and associated inference algorithms to create a “supervisory decoder” for cortical neural prosthetic devices that aim to help the severely handicapped. These devices are a brain-machine interface, consisting of surgically implanted electrode arrays and associated computer decoding algorithms, that enable a human to control external electromechanical devices, such as artificial limbs, by thought alone. Hybrid systems are characterized by discrete switching between sets of continuous dynamical activity. New hybrid models, which are flexible enough to model neurological activity, are created that incorporate both duration and dynamical state based switching paradigms. Combining generalized linear models with nonstationary and semi-Markov chains gives rise to three new hybrid systems: generalized linear hidden Markov models (GLHMM), hidden semi-Markov models (HSMM) with generalized linear model dynamics, and hidden regressor dependent Markov models (HRDMM). Bayesian inference methods, including variational Bayes and Gibbs sampling, are derived for the identification of existing and developed hybrid models. The developed inference algorithms provide advances over the current hybrid system identification literature by providing a principled way to incorporate prior knowledge and select between alternative model classes and orders, including the number of discrete system states. Future neuroprostheses that seek to provide a facile interface for the paralyzed patient will require a supervisory decoder that classifies, in real time, the discrete cognitive, behavioral, or planning state of the brain. The developed hybrid models and inference algorithms provide a framework for supervisory decoding, where first, a hybrid-state neurological activity model is identified from data, and then used to estimate the discrete state in real time. The electrical activity of multiple neurons from a cortical area in the brain associated with motor planning (the parietal reach region), and multiple signal types, including both spike arrival times and local field potentials, are fused to give more accurate results. The model structure, including the number of discrete cognitive states, can also be estimated from the data, resulting in significantly improved decoding performance compared to existing methods. Additional demonstrated applications include the automated segmentation of honey bee motion into discrete primitives, and generating mechanical system models for a pick-and-place machine.
منابع مشابه
The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation
Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملThe Prediction of Forming Limit Diagram of Low Carbon Steel Sheets Using Adaptive Fuzzy Inference System Identifier
The paper deals with devising the combination of fuzzy inference systems (FIS) and neural networks called the adaptive network fuzzy inference system (ANFIS) to determine the forming limit diagram (FLD). In this paper, FLDs are determined experimentally for two grades of low carbon steel sheets using out-of-plane (dome) formability test. The effect of different parameters such as work hardening...
متن کاملSimulation of Pore Water Pressure in the Body of Earthen Dams during Construction Using Combining Meta-Heuristic Algorithms and ANFIS
Accurate prediction of pore water pressure in the body of earth dams during construction with accurate methods is one of the most important components in managing the stability of earth dams. The main objective of this research is to develop hybrid models based on fuzzy neural inference systems and meta-heuristic optimization algorithms. In this regard, the fuzzy neural inference system and opt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009